Home » Posts tagged "Probabilidade"

BRIGNOLI, Juliano Tonizetti. Um Modelo para Suporte ao Raciocínio Diagnóstico diante da Dinâmica do Conhecimento sobre Incertezas. Tese, 2013.

A Engenharia do Conhecimento recorre a abordagens transdisciplinares objetivando oferecer soluções às demandas sociais, destacando-se, artefatos para suporte à decisão. A tomada de decisão humana pode ser de magnitude tão complexa que a atividade intensiva em conhecimento realizada pelo especialista demande assistência proveniente de modelos elaborados por uma visão sistêmica do engenheiro do conhecimento no espaço da solução. O problema desta pesquisa emerge da atividade do especialista médico em Classificação de Risco Metabólico em crianças e adolescentes. As variáveis deste cenário e o processo de classificação apresentam incertezas, manifestadas por causalidade e imprecisão. Redes Bayesianas são empregadas no suporte a classificação cujas variáveis que representam o conhecimento são de natureza probabilística. Contudo, o método bayesiano clássico, diante do fator imprecisão, pode convergir para resultados não qualificados em conformidade àqueles obtidos pelo raciocínio clínico. Por outro lado, Redes Fuzzy-Bayesianas aprimoraram o modelo clássico para suportar inferência sobre conceitos ambíguos. Esta pesquisa contribuiu com o desenvolvimento de um modelo de inferência fuzzy-bayesiano para variáveis não-dicotômicas oferecendo suporte ao raciocínio médico num cenário complexo cuja dinâmica da imprecisão é caracterizada por um tipo de superposição conceitual. Essencialmente dispõe de formalismo matemático modificando a equação do Teorema de Bayes, introduzindo qualificadores difusos para lidar com a imprecisão. Para verificar o modelo utilizou-se de simulações aplicadas sobre dados reais de prontuários. Os resultados obtidos mostraram-se convergentes com a interpretação do especialista e a característica notável foi à qualidade destes resultados nos intervalos próximos aos pontos de corte utilizados pelos especialistas e reproduzidos pelo método bayesiano clássico, problema este que não releva a imprecisão. O modelo distribuiu as probabilidades das hipóteses diagnósticas acompanhando a dinâmica inerente a imprecisão das evidências. Este efeito mostra que um paciente, mesmo que de modo gradual, pode estar evoluindo para um cenário de risco metabólico. O modelo é propenso de ser acoplado a metodologias da Engenharia do Conhecimento e sua implementação pode gerar uma ferramenta aliada à prática do diagnóstico clínico.

Link para Download: Juliano Tonizetti Brignoli